Title Lipopolysaccharide-induced sepsis impairs M2R-GIRK signaling in the mouse sinoatrial node.
Author Shrestha, Niroj; Zorn-Pauly, Klaus; Mesirca, Pietro; Koyani, Chintan N; Wolkart, Gerald; Di Biase, Valentina; Torre, Eleonora; Lang, Petra; Gorischek, Astrid; Schreibmayer, Wolfgang; Arnold, Robert; Maechler, Heinrich; Mayer, Bernd; von Lewinski, Dirk; Torrente, Angelo G; Mangoni, Matteo E; Pelzmann, Brigitte; Scheruebel, Susanne
Journal Proc Natl Acad Sci U S A Publication Year/Month 2023-Jul
PMID 37406102 PMCID -N/A-
Affiliation + expend 1.Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical Physics and Biophysics, Medical University of Graz, 8010 Graz, Austria.

Sepsis has emerged as a global health burden associated with multiple organ dysfunction and 20% mortality rate in patients. Numerous clinical studies over the past two decades have correlated the disease severity and mortality in septic patients with impaired heart rate variability (HRV), as a consequence of impaired chronotropic response of sinoatrial node (SAN) pacemaker activity to vagal/parasympathetic stimulation. However, the molecular mechanism(s) downstream to parasympathetic inputs have not been investigated yet in sepsis, particularly in the SAN. Based on electrocardiography, fluorescence Ca(2+) imaging, electrophysiology, and protein assays from organ to subcellular level, we report that impaired muscarinic receptor subtype 2-G protein-activated inwardly-rectifying potassium channel (M2R-GIRK) signaling in a lipopolysaccharide-induced proxy septic mouse model plays a critical role in SAN pacemaking and HRV. The parasympathetic responses to a muscarinic agonist, namely I(KACh) activation in SAN cells, reduction in Ca(2+) mobilization of SAN tissues, lowering of heart rate and increase in HRV, were profoundly attenuated upon lipopolysaccharide-induced sepsis. These functional alterations manifested as a direct consequence of reduced expression of key ion-channel components (GIRK1, GIRK4, and M2R) in the mouse SAN tissues and cells, which was further evident in the human right atrial appendages of septic patients and likely not mediated by the common proinflammatory cytokines elevated in sepsis.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.