Title Remote electrocardiograph monitoring using a novel adhesive strip sensor: A pilot study.
Author Bruce, Charles J; Ladewig, Dorothy J; Somers, Virend K; Bennet, Kevin E; Burrichter, Scott; Scott, Christopher G; Olson, Lyle J; Friedman, Paul A
Journal World J Cardiol Publication Year/Month 2016-Oct
PMID 27847556 PMCID PMC5088361
Affiliation 1.Charles J Bruce, Division of Cardiovascular Disease, Mayo Clinic Jacksonville, FL 32224, United States.

The increase in health care costs is not sustainable and has heightened the need for innovative low cost effective strategies for delivering patient care. Remote monitoring holds great promise for preventing or shortening duration of hospitalization even while improving quality of care. We therefore conducted a proof of concept study to examine the quality of electrocardiograph (ECG) recordings obtained remotely and to test its potential utility in detecting harmful rhythms such as atrial fibrillation. We tested a novel adhesive strip ECG monitor and assessed the ECG quality in ambulatory individuals. 2630 ECG strips were analyzed and classified as: Sinus, atrial fibrillation (AF), indeterminate, or other. Four readers independently rated ECG quality: 0: Noise; 1: QRS complexes seen, but P-wave indeterminate; 2: QRS complexes seen, P-waves seen but poor quality; and 3: Clean QRS complexes and P-waves. The combined average rating was: Noise 12%; R-R, no P-wave 10%; R-R, no PR interval 18%; and R-R with PR interval 60% (if Sinus). If minimum diagnostic quality was a score of 1, 88% of strips were diagnostic. There was moderate to high agreement regarding quality (weighted Kappa statistic values; 0.58 to 0.76) and high level of agreement regarding ECG diagnosis (ICC = 0.93). A highly variable RR interval (HRV >/= 7) predicted AF (AUC = 0.87). The monitor acquires and transmits diagnostic high quality ECG data and permits characterization of AF.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.