Title Human immune responses to influenza virus vaccines administered by systemic or mucosal routes.
Author Moldoveanu, Z; Clements, M L; Prince, S J; Murphy, B R; Mestecky, J
Journal Vaccine Publication Year/Month 1995-Aug
PMID 8525683 PMCID -N/A-
Affiliation 1.Department of Microbiology and Medicine, University of Alabama at Birmingham 35294, USA.

Healthy adult volunteers were immunized by parenteral or oral routes with trivalent inactivated influenza vaccine (A/Chile/1/83 (H1N1), A/Mississippi/1/85 (H3N2), and B/Ann Arbor/1/86), or intranasally with live attenuated, cold-adapted influenza type A/Texas/1/85 (H1N1) reassortant virus. In all volunteers, cells spontaneously secreting IgA, IgG or IgM antibodies specific to influenza virus were detected in peripheral blood on days 6-13 after immunization, and specific IgA, IgG and IgM antibodies to influenza vaccine were measured in sera and external secretions (saliva and nasal lavage). Following systemic immunization, a raise in specific antibodies of all isotypes was observed in sera beginning on day 13. Although small variations in IgA and IgM antibodies in saliva and nasal lavages were detected, antigen-specific IgG significantly increased between days 13 and 27. Intranasal administration of attenuated virus induced IgA and IgG antibodies in serum as well as in secretions. Serum antibodies were not substantially influenced by oral immunization, only a small increase in all isotypes was observed in volunteers\' sera 21 days after ingestion of vaccine. However, in secretions, antigen-specific IgA and IgG responses were detected one week after immunization and reached a peak response on day 20. These studies show that different routes of immunization can be effective for the induction of specific antibodies, and support the concept of the common mucosal immune system in humans by demonstrating that the oral or intranasal administration of antigen-induced specific antibodies of IgA isotype in external secretions, preceded by the transient appearance in peripheral blood of specific antibody-producing cells.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.