Title | Heart rate and heart rate variability in normal young adults. | ||
Author | Coumel, P; Maison-Blanche, P; Catuli, D | ||
Journal | J Cardiovasc Electrophysiol | Publication Year/Month | 1994-Nov |
PMID | 7889230 | PMCID | -N/A- |
Affiliation | 1.Hopital Lariboisiere, Paris, France. |
INTRODUCTION: The relationships between heart rate (HR) and HR variability (HRV) are not simple. Because both depend on the autonomic nervous system (ANS), they are not independent variables. Technically, the quantification of HRV is influenced by the duration of the cardiac cycles. The complexity of these relationships does not justify ignoring HR when studying HRV, as frequently occurs. METHODS AND RESULTS: Using spectral and nonspectral methods, the HR and various normalized and non-normalized indices of HRV were studied in 24-hour recordings of a homogeneous cohort of seventeen 20-year-old healthy males. The HR-HRV relationships were appraised by analyzing the same data in two different ways. The 24 mean hourly values provide consistent information on the circadian behavior of the indices, while the average 24-hour individual data show a wide spectrum of normality. Combined approaches allow assessment of the direct impact of RR interval on HRV evaluation. The correlations between HR and normalized indices of HRV are weaker in 24-hour individual data than in pooled hourly data of the same individuals. These correlations are close to 1 in the latter case, which does not mean that measuring HRV is simply another method of evaluating HR, but that normal physiology supposes a harmonious behavior of the various indices. When considered individually without normalization, the specific indices of vagal modulation (high-frequency band of the spectrum, short-term HR oscillations of the nonspectral analysis) consistently increase at night and diminish during the day. However, the low-frequency power, which supposedly reflects sympathetic influences, also increases at night, whereas more logically the longer HR oscillations would predominate during the day. Moreover, the selective analysis of HR oscillations during HR acceleration or decrease indicates that their behavior differs accordingly. CONCLUSION: We recommend that closer attention be paid to the complex relationships between HR and HRV. The strong correlations found in healthy subjects may reflect either the physiological harmony of ANS functions or simple redundancy. Their tendency to deteriorate in diseased hearts suggests that redundancy is not the cause and that abnormalities of ANS functions are not demonstrated by HRV analysis alone.