Title On the fractal nature of heart rate variability in humans: effects of respiratory sinus arrhythmia.
Author Yamamoto, Y; Fortrat, J O; Hughson, R L
Journal Am J Physiol Publication Year/Month 1995-Aug
PMID 7653612 PMCID -N/A-
Affiliation 1.Laboratory for Exercise Physiology and Biomechanics, Faculty of Education, University of Tokyo, Japan.

The purpose of the present study was to investigate the basic fractal nature of the variability in resting heart rate (HRV), relative to that in breathing frequency (BFV) and tidal volume (TVV), and to test the hypothesis that fractal HRV is due to the fractal BFV and/or TVV in humans. In addition, the possible fractal nature of respiratory volume curves (RVC) and HRV was observed. In the first study, eight subjects were tested while they sat quietly in a comfortable chair for 60 min. Beat-to-beat R-R intervals, i.e., HRV, and breath-by-breath BFV and TVV were measured. In the second study, six subjects were tested while they were in the supine position for 20-30 min. The RVC was monitored continuously together with HRV. Coarse-graining spectral analysis (Yamamoto, Y., and R. L. Hughson, Physica D 68: 250-264, 1993) was applied to these signals to evaluate the percentage of random fractal components in the time series (%Fractal) and the spectral exponent (beta), which characterizes irregularity of the signals. The estimates of beta were determined for each variable only over the range normally used to evaluate HRV. Values for %Fractal and beta of both BFV and TVV were significantly (P < 0.05) greater than those for HRV. In addition, there was no significant (P > 0.05) correlation between the beta values of HRV relative to either BFV (r = 0.14) or TVV (r = 0.34). RVC showed a smooth oscillation as compared with HRV; %Fractal for RVC (42.3 +/- 21.7%, mean +/- SD) was significantly (P < 0.05) lower than that for HRV (78.5 +/- 4.2%).(ABSTRACT TRUNCATED AT 250 WORDS)

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.