Title Predicting the distribution of Ixodes ricinus and Dermacentor reticulatus in Europe: a comparison of climate niche modelling approaches.
Author Noll, Madeleine; Wall, Richard; Makepeace, Benjamin L; Newbury, Hannah; Adaszek, Lukasz; Bodker, Rene; Estrada-Pena, Agustin; Guillot, Jacques; da Fonseca, Isabel Pereira; Probst, Julia; Overgaauw, Paul; Strube, Christina; Zakham, Fathiah; Zanet, Stefania; Rose Vineer, Hannah
Journal Parasit Vectors Publication Year/Month 2023-Oct
PMID 37880680 PMCID PMC10601327
Affiliation + expend 1.Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK. madeleine.noll@liverpool.ac.uk.

BACKGROUND: The ticks Ixodes ricinus and Dermacentor reticulatus are two of the most important vectors in Europe. Climate niche modelling has been used in many studies to attempt to explain their distribution and to predict changes under a range of climate change scenarios. The aim of this study was to assess the ability of different climate niche modelling approaches to explain the known distribution of I. ricinus and D. reticulatus in Europe. METHODS: A series of climate niche models, using different combinations of input data, were constructed and assessed. Species occurrence records obtained from systematic literature searches and Global Biodiversity Information Facility data were thinned to different degrees to remove sampling spatial bias. Four sources of climate data were used: bioclimatic variables, WorldClim, TerraClimate and MODIS satellite-derived data. Eight different model training extents were examined and three modelling frameworks were used: maximum entropy, generalised additive models and random forest models. The results were validated through internal cross-validation, comparison with an external independent dataset and expert opinion. RESULTS: The performance metrics and predictive ability of the different modelling approaches varied significantly within and between each species. Different combinations were better able to define the distribution of each of the two species. However, no single approach was considered fully able to capture the known distribution of the species. When considering the mean of the performance metrics of internal and external validation, 24 models for I. ricinus and 11 models for D. reticulatus of the 96 constructed were considered adequate according to the following criteria: area under the receiver-operating characteristic curve > 0.7; true skill statistic > 0.4; Miller\'s calibration slope 0.25 above or below 1; Boyce index > 0.9; omission rate < 0.15. CONCLUSIONS: This comprehensive analysis suggests that there is no single \'best practice\' climate modelling approach to account for the distribution of these tick species. This has important implications for attempts to predict climate-mediated impacts on future tick distribution. It is suggested here that climate variables alone are not sufficient; habitat type, host availability and anthropogenic impacts, not included in current modelling approaches, could contribute to determining tick presence or absence at the local or regional scale.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.