Title | Core body temperature changes before sleep are associated with nocturnal heart rate variability. | ||
Author | Bigalke, Jeremy A; Cleveland, Emily L; Barkstrom, Elyse; Gonzalez, Joshua E; Carter, Jason R | ||
Journal | J Appl Physiol (1985) | Publication Year/Month | 2023-Jul |
PMID | 37262106 | PMCID | PMC10292981 |
Affiliation + expend | 1.Department of Health and Human Development, Montana State University, Bozeman, Montana, United States. |
Core body temperature (CBT) reductions occur before and during the sleep period, with the extent of presleep reductions corresponding to sleep onset and quality. Presleep reductions in CBT coincide with increased cardiac parasympathetic activity measured via heart rate variability (HRV), and while this appears to persist into the sleep period, individual differences in presleep CBT decline and nocturnal HRV remain unexplored. The purpose of the current study was to assess the relationship between individual differences in presleep CBT reductions and nocturnal heart rate (HR) and HRV in a population of 15 objectively poor sleeping adults [10 males, 5 females; age, 33 +/- 4 yr; body mass index (BMI) 27 +/- 1 kg/m(2)] with the hypothesis that blunted CBT rate of decline would be associated with elevated HR and reduced nocturnal HRV. Following an adaptation night, all participants underwent an overnight, in-laboratory sleep study with simultaneous recording of polysomnographic sleep including electrocardiography (ECG) and CBT recording. Correlations between CBT rate of change before sleep and nocturnal HRV were assessed. Blunted rate of CBT decline was significantly associated with increased heart rate (HR) in stage 2 (N2; R = 0.754, P = 0.001), stage 3 (N3; R = 0.748, P = 0.001), and rapid-eye movement (REM; R = 0.735, P = 0.002). Similarly, blunted rate of CBT decline before sleep was associated with reduced HRV across sleep stages. These findings indicate a relationship between individual differences in presleep thermoregulatory processes and nocturnal cardiac autonomic function in poor sleeping adults.NEW & NOTEWORTHY Core body temperature (CBT) reductions before sleep onset coincide with increases in heart rate variability (HRV) that persist throughout the sleep period. However, the relationship between individual differences in the efficiency of presleep core temperature regulation and nocturnal heart rate variability remains equivocal. The present study reports an association between the magnitude of presleep core body temperature changes and nocturnal parasympathetic activity, highlighting overlap between thermoregulatory processes before sleep and nocturnal cardiac autonomic function.