Title | Fractal Properties of Heart Rate Dynamics: A New Biomarker for Anesthesia-Biphasic Changes in General Anesthesia and Decrease in Spinal Anesthesia. | ||
Author | Lan, Jheng-Yan; Shieh, Jiann-Shing; Yeh, Jia-Rong; Fan, Shou-Zen | ||
Journal | Sensors (Basel) | Publication Year/Month | 2022-Nov |
PMID | 36501959 | PMCID | PMC9740393 |
Affiliation + expend | 1.Department of Anesthesiology, Taipei Veterans General Hospital, Yuli Branch, Hualian 98142, Taiwan. |
Processed electroencephalogram (EEG) has been considered a useful tool for measuring the depth of anesthesia (DOA). However, because of its inability to detect the activities of the brain stem and spinal cord responsible for most of the vital signs, a new biomarker for measuring the multidimensional activities of the central nervous system under anesthesia is required. Detrended fluctuation analysis (DFA) is a new technique for detecting the scaling properties of nonstationary heart rate (HR) behavior. This study investigated the changes in fractal properties of heart rate variability (HRV), a nonlinear analysis, under intravenous propofol, inhalational desflurane, and spinal anesthesia. We compared the DFA method with traditional spectral analysis to evaluate its potential as an alternative biomarker under different levels of anesthesia. Eighty patients receiving elective procedures were randomly allocated different anesthesia. HRV was measured with spectral analysis and DFA short-term (4-11 beats) scaling exponent (DFAalpha1). An increase in DFAalpha1 followed by a decrease at higher concentrations during propofol or desflurane anesthesia is observed. Spinal anesthesia decreased the DFAalpha1 and low-/high-frequency ratio (LF/HF ratio). DFAalpha1 of HRV is a sensitive and specific method for distinguishing changes from baseline to anesthesia state. The DFAalpha1 provides a potential real-time biomarker to measure HRV as one of the multiple dimensions of the DOA.