Title | Cross-sectional and longitudinal associations of styrene and ethylbenzene exposure with heart rate variability alternation among urban adult population in China. | ||
Author | Yu, Linling; Wang, Bin; Liu, Wei; Xu, Tao; Yang, Meng; Wang, Xing; Tan, Qiyou; Yang, Shijie; Fan, Lieyang; Cheng, Man; Qiu, Weihong; Chen, Weihong | ||
Journal | Sci Total Environ | Publication Year/Month | 2022-Nov |
PMID | 35810908 | PMCID | -N/A- |
Affiliation + expend | 1.Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China. |
Styrene and ethylbenzene (S/EB) are the monomers of polystyrene (PS) and polyethylene (PE), respectively, and have been identified as significant hazardous air pollutants by the U.S. Environmental Protection Agency. However, the adverse effects of S/EB on human health, especially cardiovascular health, have not been well established. Urinary biomarker of S/EB exposure and heart rate variability (HRV) were measured in urban adults from the Wuhan-Zhuhai cohort and were repeated after 3-year and 6-year follow-ups. Linear mixed models were used to estimate associations of S/EB exposure biomarker with HRV and longitudinal additional annual change of HRV. The mediating role of transforming growth factor (TGF)-beta1 was tested by using mediation analysis. A total of 2842 general adults were included at baseline analysis, and 4748 observations were included in the repeated measurement study. In the cross-sectional analysis, each 1% increment in urinary S/EB exposure biomarker was significantly associated with a 0.106 % (95 % CI: -0.160, -0.052), 0.109 % (-0.169, -0.049), 0.099 % (-0.145, -0.053), 0.040 % (-0.060, -0.020), and 0.031 % (-0.054, -0.007) decrement in low frequency (LF), high frequency (HF), total power (TP), standard deviation of all normal-to-normal intervals (SDNN), and square root of the mean squared difference between adjacent normal-to-normal interval, respectively. Smoking status modified the relationships of urinary S/EB exposure biomarker with TP and SDNN. TGF-beta1 mediated 3.09-5.16 % of the association between urinary S/EB biomarker and lower HRV. The follow-up analyses detected a negative association between urinary S/EB exposure biomarker and the additional annual change of LF (beta: -0.016; 95 % CI: -0.028, -0.004), HF (-0.014; -0.026, -0.001), and TP (-0.011; -0.021, -0.001). Our findings demonstrated that S/EB exposure was associated with HRV reduction among the general urban adults and the TGF-beta pathway may play a part of the mediating role in this association.