Title A Window Into the Tired Brain: Neurophysiological Dynamics of Visuospatial Working Memory Under Fatigue.
Author Karthikeyan, Rohith; Carrizales, Joshua; Johnson, Connor; Mehta, Ranjana K
Journal Hum Factors Publication Year/Month 2022-May
PMID 35574703 PMCID -N/A-
Affiliation 1.14736Texas A&M University, College Station, Texas, USA.

OBJECTIVE: We examine the spatiotemporal dynamics of neural activity and its correlates in heart rate and its variability (HR/HRV) during a fatiguing visuospatial working memory task. BACKGROUND: The neural and physiological drivers of fatigue are complex, coupled, and poorly understood. Investigations that combine the fidelity of neural indices and the field-readiness of physiological measures can facilitate measurements of fatigue states in operational settings. METHOD: Sixteen healthy adults, balanced by sex, completed a 60-minute fatiguing visuospatial working memory task. Changes in task performance, subjective measures of effort and fatigue, cerebral hemodynamics, and HR/HRV were analyzed. Peak brain activation, functional and effective connections within relevant brain networks were contrasted against spectral and temporal features of HR/HRV. RESULTS: Task performance elicited increased neural activation in regions responsible for maintaining working memory capacity. With the onset of time-on-task effects, resource utilization was seen to increase beyond task-relevant networks. Over time, functional connections in the prefrontal cortex were seen to weaken, with changes in the causal relationships between key regions known to drive working memory. HR/HRV indices were seen to closely follow activity in the prefrontal cortex. CONCLUSION: This investigation provided a window into the neurophysiological underpinnings of working memory under the time-on-task effect. HR/HRV was largely shown to mirror changes in cortical networks responsible for working memory, therefore supporting the possibility of unobtrusive state recognition under ecologically valid conditions. APPLICATIONS: Findings here can inform the development of a fieldable index for cognitive fatigue.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.