Title Biometrics from a wearable device reveal temporary effects of COVID-19 vaccines on cardiovascular, respiratory, and sleep physiology.
Author Presby, David M; Capodilupo, Emily R
Journal J Appl Physiol (1985) Publication Year/Month 2022-Feb
PMID 35019761 PMCID PMC8816631
Affiliation 1.Department of Data Science and Research, Whoop, Inc., Boston, Massachusetts.

Although vaccines against SARS-CoV-2 have been proven safe and effective, transient side-effects lasting 24-48 h postvaccination have been reported. To better understand the subjective and objective response to COVID-19 vaccination, we conducted a retrospective analysis on 69,619 subscribers to a wrist-worn biometric device (WHOOP Inc., Boston, MA) who received either the AstraZeneca, Janssen/Johnson & Johnson, Moderna, or Pfizer/BioNTech vaccine. The WHOOP device measures resting heart rate (RHR), heart rate variability (HRV), respiratory rate (RR), and sleep architecture, and these physiological measures were normalized to the same day of the week, 1 wk before vaccination. Averaging across vaccines, RHR, RR, and percent sleep derived from light sleep were elevated on the first night following vaccination and returned to baseline within 4 nights postvaccination. When statistical differences were observed between doses on the first night postvaccination, larger deviations in physiological measures were observed following the first dose of AstraZeneca and the second dose of Moderna and Pfizer/BioNTech. When statistical differences were observed between age groups or gender on the first night postvaccination, larger deviations in physiological measures were observed in younger populations and in females (compared with males). When combining self-reported symptoms (fatigue, muscle aches, headache, chills, or fever) with the objectively measured physiological parameters, we found that self-reporting fever or chills had the strongest association with deviations in physiological measures following vaccination. In summary, these results suggest that COVID-19 vaccines temporarily affect cardiovascular, respiratory, and sleep physiology and that dose, gender, and age affect the physiological response to vaccination.NEW & NOTEWORTHY Here we report the first large-scale study investigating the effect of COVID-19 vaccines on cardiovascular, respiratory, and sleep physiology. We find that vaccines temporarily impact measures of cardiovascular, respiratory, and sleep physiology and that the degree of change in physiology is influenced by the manufacturer and dose of the vaccine and the gender and age of the vaccine recipient. These results provide insights into physiological changes that occur with COVID-19 vaccination and indicate that the unique responses that occur postvaccination may depend on manufacturer, dose, gender, and age.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.