Title | Robust PPG-Based Mental Workload Assessment System Using Wearable Devices. | ||
Author | Beh, Win-Ken; Wu, Yi-Hsuan; Wu, An-Yeu | ||
Journal | IEEE J Biomed Health Inform | Publication Year/Month | 2023-May |
PMID | 34962889 | PMCID | -N/A- |
Heart rate variability (HRV) has been used in assessing mental workload (MW) level. Compared with ECG, photoplethysmogram (PPG) provides convenient in assessing MW with wearable devices, which is more suitable for daily usage. However, PPG collected by smartwatches are prone to suffer from artifacts. Those signal corruptions cause invalid Inter-beat Intervals (IBI), making it challenging to evaluate the HRV feature. Hence, the PPG-based MW assessment system is difficult to obtain a sustainable and reliable assessment of MW. In this paper, we propose a pre- and post- processing technique, called outlier removal and uncertainty estimation, respectively, to reduce the negative influences of invalid IBIs. The proposed method helps to acquire accurate HRV features and evaluate the reliability of incoming IBIs, rejecting possibly misclassified data. We verified our approach in two open datasets, which are CLAS and MAUS. Experiment results show proposed method achieved higher accuracy (66.7% v.s. 74.2%) and lower variance (11.3% v.s. 10.8%) among users, which has comparable performance to an ECG-based MW system.