Title | High-resolution Metatranscriptomic Characterization of the Pulmonary RNA Virome After Lung Transplantation. | ||
Author | Mitchell, Alicia B; Li, Ci-Xiu; Oliver, Brian G G; Holmes, Edward C; Glanville, Allan R | ||
Journal | Transplantation | Publication Year/Month | 2021-Dec |
PMID | 34793112 | PMCID | -N/A- |
Affiliation + expend | 1.Sydney Medical School, University of Sydney, Sydney, NSW, Australia. |
BACKGROUND: Lung transplantation provides a unique opportunity to investigate the constituents and temporal dynamics of the human pulmonary microbiome after lung transplantation. For methodological reasons, prior studies using metagenomics have detected DNA viruses but not demonstrated the presence of RNA viruses, including those that are common community acquired. In this proof-of-concept study, we aimed to further characterize the pulmonary microbiome after lung transplantation by using metagenomic next-generation sequencing (mNGS), with a particular focus on the RNA virome. METHODS: We performed a single-center longitudinal study of lower respiratory tract RNA viruses and bacteria using bronchoalveolar lavage at postoperative day 1 and week 6 analyzed with total RNA sequencing (metatranscriptomics). Five primary and 5 repeat transplant recipients were recruited. RESULTS: mNGS identified 5 RNA viruses (nil in the normal saline control), including 4 species of human rhinovirus not previously reported in Australia: A7 (HRV-A7), C22 (HRV-C22), B52 (HRV-B52), and B72 (HRV-B72). Overall, 12/20 specimens were virus positive in 7/10 cases. Human parainfluenza virus 3 was the most frequent virus in 7/20 specimens in 5/10 cases. In this small study, we did not detect a significant difference in abundance and diversity of RNA viruses and bacteria at postoperative day 1 and 6 wk, nor differences between retransplant recipients and primary lung transplant recipients. CONCLUSIONS: Our study demonstrates how mNGS can also identify RNA viruses within the human pulmonary virome, including novel RNA viruses, and paves the way for a greater understanding of the complex relationships among the constituents of the pulmonary infectome.