Title Acute cardiovascular effects of traffic-related air pollution (TRAP) exposure in healthy adults: A randomized, blinded, crossover intervention study.
Author Han, Bin; Zhao, Ruojie; Zhang, Nan; Xu, Jia; Zhang, Liwen; Yang, Wen; Geng, Chunmei; Wang, Xinhua; Bai, Zhipeng Dr; Vedal, Sverre
Journal Environ Pollut Publication Year/Month 2021-Nov
PMID 34243086 PMCID -N/A-
Affiliation + expend 1.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, 98105, USA.

Exposure to traffic-related air pollution (TRAP) may enhance the risk of cardiovascular disease. However, the short-term effects of TRAP components on the cardiovascular system are not well understood. We conducted a randomized, double-blinded, crossover intervention study in which 39 healthy university students spent 2 h next to a busy road. Participants wore a powered air-purifying respirator (PAPR) or an N95 mask. PAPRs were equipped with a filter for particulate matter (PM), a PM and volatile organic compounds (VOCs) filter or a sham filter. Participants were blinded to PAPR filter type and underwent randomized exposures four times, once for each intervention mode. Blood pressure (BP), heart rate (HR) and heart rate variability (HRV) were measured before, during and for 6 h after the roadside exposure. Linear mixed-effect models were used to evaluate the effects of the interventions relative to baseline controlling for other covariates. All HRV measures increased during and following exposure for all intervention modes. Some HRV measures (SDNN and rMSSD during exposure and SDNN after exposure) were marginally affected by PM filtration. Wearing the N95 mask affected VLF power and rMSSD responses to traffic exposure differently than the PAPR interventions. Both systolic and diastolic BP increased slightly during exposure, but then were generally lower than baseline after exposure for the sham and filter interventions. HR, which fell during exposure and mostly remained lower than baseline after exposure, was lower yet with all filter interventions compared to the sham mode following exposure. Therefore, short-term exposure to traffic acutely affects HRV, BP and HR, but N95 mask and PAPR interventions generally show little efficacy in reducing these effects. Removing the PM component of TRAP has some limited effects on HRV responses to exposure but exaggerates the traffic-related decrease in HR. HRV findings from N95 mask interventions need to be interpreted cautiously.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.