Title Contactless analysis of heart rate variability during cold pressor test using radar interferometry and bidirectional LSTM networks.
Author Shi, Kilin; Steigleder, Tobias; Schellenberger, Sven; Michler, Fabian; Malessa, Anke; Lurz, Fabian; Rohleder, Nicolas; Ostgathe, Christoph; Weigel, Robert; Koelpin, Alexander
Journal Sci Rep Publication Year/Month 2021-Feb
PMID 33542260 PMCID PMC7862409
Affiliation + expend 1.Institute for Electronics Engineering, Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU), 91058, Erlangen, Germany. kilin.shi@fau.de.

Contactless measurement of heart rate variability (HRV), which reflects changes of the autonomic nervous system (ANS) and provides crucial information on the health status of a person, would provide great benefits for both patients and doctors during prevention and aftercare. However, gold standard devices to record the HRV, such as the electrocardiograph, have the common disadvantage that they need permanent skin contact with the patient. Being connected to a monitoring device by cable reduces the mobility, comfort, and compliance by patients. Here, we present a contactless approach using a 24 GHz Six-Port-based radar system and an LSTM network for radar heart sound segmentation. The best scores are obtained using a two-layer bidirectional LSTM architecture. To verify the performance of the proposed system not only in a static measurement scenario but also during a dynamic change of HRV parameters, a stimulation of the ANS through a cold pressor test is integrated in the study design. A total of 638 minutes of data is gathered from 25 test subjects and is analysed extensively. High F-scores of over 95% are achieved for heartbeat detection. HRV indices such as HF norm are extracted with relative errors around 5%. Our proposed approach is capable to perform contactless and convenient HRV monitoring and is therefore suitable for long-term recordings in clinical environments and home-care scenarios.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.