Title | Acute Effects of an Incremental Exercise Test on Psychophysiological Variables and Their Interaction. | ||
Author | John, Alexander T; Wind, Johanna; Horst, Fabian; Schollhorn, Wolfgang I | ||
Journal | J Sports Sci Med | Publication Year/Month | 2020-Sep |
PMID | 32874113 | PMCID | PMC7429434 |
Affiliation | 1.Department of Training and Movement Science, Institute of Sport Science, Johannes Gutenberg-University, Mainz, Germany. |
Besides neurophysiological effects, the potential influence of exercise induced strains in terms of peripheral physiology or subjectively perceived stress as well as their possible reciprocal relation is not clearly understood yet. This study aimed to analyze effects of increasing exercise intensity on brain activity (spontaneous EEG), heart rate variability (HRV) and rating of perceived exertion (RPE) by means of a graded exercise test (GXT). Fifteen participants performed an open-loop GXT on a bicycle ergometer beginning at 50W and an increment of 50W every three minutes. Rest measurements were conducted pre- (5 min) and especially post-exercise (15 min) to analyze (neuro-) physiological prolonged effects. EEG and HRV were measured in parallel before, during (including RPE) and after GXT. Brain activity showed next to already determined effects (e.g. increased (pre)frontal theta, alpha and beta power) a particular activation of the temporal lobe after GXT compared to pre-resting state. HRV frequency parameters significantly decreased following GXT. Recovery process revealed a significant alteration of EEG and HRV towards pre-resting state with prolonged effects in the temporal lobe. Correlation analysis during GXT led to moderately negative effects of EEG total spectrum power and HRV frequency parameters. Frontopolar and temporal lobe revealed noteworthy negative correlated effects with HRV. Referring to RPE, solely temporal gamma activity correlated moderately positive with RPE. Recovery exposed only in the temporal cortex a moderately negative correlation to HF power. Thus, further analysis of the temporal brain lobe in context with exhausting physical exercise comprising induced regulation of cardiovascular stress and perceived exertion is promoted. These results indicate a brain lobe specific relation to peripheral physiology as well as perceived strain with a dependency of rest or exercise condition. Therefore, enough incentives are given to encourage further analysis of a connection between the (neuro-) physiological system as well as subjectively perceived exertion.