Title | Processing speed and attention training modifies autonomic flexibility: A mechanistic intervention study. | ||
Author | Lin, Feng V; Tao, Ye; Chen, Quanjing; Anthony, Mia; Zhang, Zhengwu; Tadin, Duje; Heffner, Kathi L | ||
Journal | Neuroimage | Publication Year/Month | 2020-Jun |
PMID | 32165263 | PMCID | PMC7165056 |
Affiliation + expend | 1.Elaine C. Hubbard Center for Nursing Research on Aging, School of Nursing, University of Rochester Medical Center, USA; Department of Psychiatry, School of Medicine and Dentistry, University of Rochester Medical Center, USA; Department of Brain and Cognitive Sciences, University of Rochester, USA; Department of Neuroscience, School of Medicine and Dentistry, University of Rochester Medical Center, USA; Department of Neurology, School of Medicine and Dentistry, University of Rochester Medical Center, USA. Electronic address: FengVankee_Lin@urmc.rochester.edu. |
Adaptation capacity is critical for maintaining cognition, yet it is understudied in groups at risk for dementia. Autonomic nervous system (ANS) is critical for neurovisceral integration and is a key contributor to adaptation capacity. To determine the central nervous system\'s top-down regulation of ANS, we conducted a mechanistic randomized controlled trial study, using a 6-week processing speed and attention (PS/A)-targeted intervention. Eighty-four older adults with amnestic mild cognitive impairment (aMCI) were randomized to a 6-week PS/A-targeted intervention or an active control without PS/A. Utilizing repeated measures (i.e., PS/A test different from the intervention, resting and cognitive task-based ECG, and resting fMRI) at baseline, immediately post-intervention (post-test), and 6-month follow-up, we aimed to test whether PS/A causally influences vagal control of ANS via their shared central neural pathways in aMCI. We indexed vagal control of ANS using high-frequency heart rate variability (HF-HRV) extracted from ECG data. Functional brain connectivity patterns were extracted from fMRI using advanced statistical tools. Compared to the control group, the intervention group showed significant improvement in PS/A, HF-HRV, salience network (SN), central executive network (CEN), and frontal parietal network (FPN) connectivity at post-test; the effect on SN, CEN, and FPN remained at 6-month follow-up. Changes in PS/A and SN connectivity significantly predicted change in HF-HRV from baseline to post-test and/or 6-month-follow-up. Age, neurodegeneration, nor sex did not affect these relationships. This work provides novel support for top-down regulation of PS/A and associated SN on vagal control of ANS. Intervening PS/A may be a viable approach for promoting adaptation capacity in groups at risk for dementia.