Title | NOD-like receptor family, pyrin domain containing 3 (NLRP3) contributes to inflammation, pyroptosis, and mucin production in human airway epithelium on rhinovirus infection. | ||
Author | Liu, Tao; Zhou, Yu Tao; Wang, Li Qiu; Li, Li Yue; Bao, Qing; Tian, Shuo; Chen, Mei Xin; Chen, He Xin; Cui, Jun; Li, Chun Wei | ||
Journal | J Allergy Clin Immunol | Publication Year/Month | 2019-Sep |
PMID | 31102698 | PMCID | -N/A- |
Affiliation + expend | 1.State Key Laboratory of Oncology in South China, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China. |
BACKGROUND: The airway epithelium maintains mucosal homeostasis and effectively responds to pathogens. The roles of the epithelial NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in human rhinovirus (hRV) infection and its effects mediating epithelial functional changes remain poorly understood. OBJECTIVE: We investigated the mechanisms and cellular functions mediated by the epithelial NLRP3 inflammasome on hRV infection. METHODS: Using models of primary human nasal epithelial progenitor cells and differentiated human nasal epithelial cells (hNECs) infected by hRV, we functionally examined key factors for NLRP3 inflammasome activation, cell death, and mucus production. Furthermore, NLRP3 and IL-1beta in human epithelium from nasal mucosal inflammation induced by hRV were evaluated. RESULTS: The inflammasome-mediated IL-1beta secretion and pyroptosis in human nasal epithelial progenitor cells and hNECs on hRV infection were dependent on the DDX33/DDX58-NLRP3-caspase-1-GSDMD axis. In differentiated hNECs hRV could also promote major airway epithelial mucin (MUC5AC) production through this axis. Our results further confirmed that the NLRP3 inflammasome signaling pathway was responsible for suppressing hRV replication in airway epithelium. Finally, hRV infection in chronically inflamed nasal mucosa was associated with epithelial mucus hyperproduction, whereas NLRP3 and IL-1beta expression levels were significantly increased in hRV-infected epithelium with goblet cell hyperplasia compared with normal epithelium without viral infection. CONCLUSION: The current study showed that the NLRP3 inflammasome signaling axis could functionally mediate hRV-induced inflammation, pyroptosis, and mucus production in airway epithelium, which might be an essential mechanism associated with hRV-induced airway remodeling.