Title Deficient post-ictal cardiorespiratory compensatory mechanisms mediated by the periaqueductal gray may lead to death in a mouse model of SUDEP.
Author Kommajosyula, Srinivasa P; Tupal, Srinivasan; Faingold, Carl L
Journal Epilepsy Res Publication Year/Month 2018-Nov
PMID 30165263 PMCID -N/A-
Affiliation + expend 1.Departments of Pharmacology and Neurology, Southern Illinois University School of Medicine, PO BOX 19629, Springfield, IL, 62794-9629, United States.

Post-ictal cardiorespiratory failure is implicated as a major cause of sudden unexpected death in epilepsy (SUDEP) in patients. The DBA/1 mouse model of SUDEP is abnormally susceptible to fatal seizure-induced cardiorespiratory failure (S-CRF) induced by convulsant drug, hyperthermia, electroshock, and acoustic stimulation. Clinical and pre-clinical studies have implicated periaqueductal gray (PAG) abnormalities in SUDEP. Recent functional neuroimaging studies observed that S-CRF resulted in selective changes in PAG neuronal activity in DBA/1 mice. The PAG plays a critical compensatory role for respiratory distress caused by numerous physiological challenges in non-epileptic individuals. These observations suggest that abnormalities in PAG-mediated cardiorespiratory modulation may contribute to S-CRF in DBA/1 mice. To evaluate this, electrical stimulation (20 Hz, 20-100 muA, 10 s) was presented in the PAG of anesthetized DBA/1 and C57BL/6 (non-epileptic) control mice, and post-stimulus changes in respiration [inter-breath interval (IBI)] and heart rate variability (HRV) were examined. The post-stimulus period was considered analogous to the post-ictal period when S-CRF occurred in previous DBA/1 mouse studies. PAG stimulation caused significant intensity-related decreases in IBI in both mouse strains. However, this effect was significantly reduced in DBA/1 vis-a-vis C57BL/6 mice. These changes began immediately following cessation of stimulation and remained significant for 10 s. This time period is critical for initiating resuscitation to successfully prevent seizure-induced death in previous DBA/1 mouse experiments. Significant post-stimulus increases in HRV were also seen at >/=60 muA in the PAG in C57BL/6 mice, which were absent in DBA/1 mice. These data along with previous neuroimaging findings suggest that compensatory cardiorespiratory modulation mediated by PAG is deficient, which may be important to the susceptibility of DBA/1 mice to S-CRF. These observations suggest that correcting this deficit pharmacologically or by electrical stimulation may help to prevent S-CRF. These findings further support the potential importance of PAG abnormalities to human SUDEP.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.