Title Long-Acting GLP-1 Receptor Agonist Exenatide Influence on the Autonomic Cardiac Sympatho-Vagal Balance.
Author Cacciatori, Vittorio; Zoppini, Giacomo; Bellavere, Federico; Rigolon, Riccardo; Thomaseth, Karl; Pichiri, Isabella; Trombetta, Maddalena; Dauriz, Marco; De Santi, Francesca; Targher, Giovanni; Santi, Lorenza; Bonora, Enzo
Journal J Endocr Soc Publication Year/Month 2018-Jan
PMID 29379894 PMCID PMC5779107
Affiliation + expend 1.Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata, University of Verona, 37126 Verona, Italy.

Long-acting glucagon-like peptide 1 receptor agonists are increasingly used to treat type 2 diabetes. An increase of heart rate (HR) has been observed with their use. To elucidate the role of the cardiac sympatho-vagal balance as a possible mediator of the reported increase in HR, we performed power spectral analysis of HR variability (HRV) in patients receiving exenatide extended-release (ER). Twenty-eight ambulatory patients with type 2 diabetes underwent evaluation at initiation of exenatide-ER and thereafter at 3 and at 6 months. To obtain spectral analyses of HRV, a computerized acquisition of 10 minutes of RR electrocardiogram intervals (mean values of ~700 RR intervals) were recorded both in lying and in standing positions. All patients showed a substantial increase of HR both in lying and in standing positions. Systolic blood pressure, body weight, and glycated hemoglobin A1c significantly decreased both at 3 and 6 months compared with basal levels. The low-frequency/high-frequency ratio varied from 3.05 +/- 0.4 to 1.64 +/- 0.2 (P < 0.001) after 3 months and to 1.57 +/- 0.3 (P < 0.001) after 6 months in a lying position and from 4.56 +/- 0.8 to 2.24 +/- 0.3 (P < 0.001) after 3 months and to 2.38 +/- 0.4 (P < 0.001) after 6 months in a standing position compared with basal values, respectively. HR variations, induced by exenatide-ER treatment, do not appear to be related to sympathetic autonomic tone. Of note, we observed a relative increase of vagal influence on the heart.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.