Title TRAIL signaling is proinflammatory and proviral in a murine model of rhinovirus 1B infection.
Author Girkin, Jason L; Hatchwell, Luke M; Collison, Adam M; Starkey, Malcolm R; Hansbro, Philip M; Yagita, Hideo; Foster, Paul S; Mattes, Joerg
Journal Am J Physiol Lung Cell Mol Physiol Publication Year/Month 2017-Jan
PMID 27836899 PMCID -N/A-
Affiliation + expend 1.Experimental and Translational Respiratory Medicine Group, University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia.

the aim of this study is to elucidate the role of TRAIL during rhinovirus (RV) infection in vivo. Naive wild-type and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-deficient (Tnfsf10(-/-)) BALB/c mice were infected intranasally with RV1B. In separate experiments, Tnfsf10(-/-) mice were sensitized and challenged via the airway route with house dust mite (HDM) to induce allergic airways disease and then challenged with RVIB or UV-RVIB. Airway hyperreactivity (AHR) was invasively assessed as total airways resistance in response to increasing methacholine challenge and inflammation was assessed in bronchoalveolar lavage fluid at multiple time points postinfection. Chemokines were quantified by ELISA of whole lung lysates and viral load was determined by quantitative RT-PCR and tissue culture infective dose (TCID50). Human airway epithelial cells (BEAS2B) were infected with RV1B and stimulated with recombinant TRAIL or neutralizing anti-TRAIL antibodies and viral titer assessed by TCID50 HDM-challenged Tnfsf10(-/-) mice were protected against RV-induced AHR and had suppressed cellular infiltration in the airways upon RV infection. Chemokine C-X-C-motif ligand 2 (CXCL2) production was suppressed in naive Tnfsf10(-/-) mice infected with RV1B, with less RV1B detected 24 h postinfection. This was associated with reduced apoptotic cell death and a reduction of interferon (IFN)-lambda2/3 but not IFN-alpha or IFN-beta. TRAIL stimulation increased, whereas anti-TRAIL antibodies reduced viral replication in RV1B-infected BEAS2B cells in vitro. In conclusion, TRAIL promotes RV-induced AHR, inflammation and RV1B replication, implicating this molecule and its downstream signaling pathways as a possible target for the amelioration of RV1B-induced allergic and nonallergic lung inflammation and AHR.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.