Title | Assessing heart rate variability through wavelet-based statistical measures. | ||
Author | Wachowiak, Mark P; Hay, Dean C; Johnson, Michel J | ||
Journal | Comput Biol Med | Publication Year/Month | 2016-Oct |
PMID | 27598465 | PMCID | -N/A- |
Affiliation + expend | 1.Department of Computer Science and Mathematics, Nipissing University, North Bay, ON, Canada. Electronic address: markw@nipissingu.ca. |
Because of its utility in the investigation and diagnosis of clinical abnormalities, heart rate variability (HRV) has been quantified with both time and frequency analysis tools. Recently, time-frequency methods, especially wavelet transforms, have been applied to HRV. In the current study, a complementary computational approach is proposed wherein continuous wavelet transforms are applied directly to ECG signals to quantify time-varying frequency changes in the lower bands. Such variations are compared for resting and lower body negative pressure (LBNP) conditions using statistical and information-theoretic measures, and compared with standard HRV metrics. The latter confirm the expected lower variability in the LBNP condition due to sympathetic nerve activity (e.g. RMSSD: p=0.023; SDSD: p=0.023; LF/HF: p=0.018). Conversely, using the standard Morlet wavelet and a new transform based on windowed complex sinusoids, wavelet analysis of the ECG within the observed range of heart rate (0.5-1.25Hz) exhibits significantly higher variability, as measured by frequency band roughness (Morlet CWT: p=0.041), entropy (Morlet CWT: p=0.001), and approximate entropy (Morlet CWT: p=0.004). Consequently, this paper proposes that, when used with well-established HRV approaches, time-frequency analysis of ECG can provide additional insights into the complex phenomenon of heart rate variability.