Title Bronchial platelet-activating factor receptor in chronic obstructive pulmonary disease.
Author Suri, Reetika; Mallia, Patrick; Martin, Joanne E; Footitt, Joseph; Zhu, Jie; Trujillo-Torralbo, Maria-Belen; Johnston, Sebastian L; Grigg, Jonathan
Journal Respir Med Publication Year/Month 2014-Jun
PMID 24685340 PMCID -N/A-
Affiliation + expend 1.Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.

BACKGROUND: Bacteria expressing phosphorylcholine (ChoP) co-opt host-expressed platelet-activating factor receptor (PAFR) to adhere to lower airway cells. Cigarette smoke and rhinovirus (RV) infection upregulate PAFR-dependent bacterial adhesion to airway cells in vitro, and in healthy adults smoking increases the proportion of PAFR positive bronchial epithelial cells. To date the effect of chronic obstructive pulmonary disease (COPD) on smoke-induced PAFR is unknown. We therefore sought to test the hypothesis that bronchial PAFR mRNA expression is increased in smokers with chronic obstructive pulmonary disease (COPD), and further increases after RV infection. METHODS: Endobronchial biopsies were obtained by fibreoptic bronchoscopy from healthy non-smokers, smokers without airway obstruction, and smokers with COPD, before and after infection with rhinovirus (RV) serotype 16. Endobronchial PAFR mRNA expression was assessed by quantitative PCR and expressed as a ratio of glyceraldehyde-3-phosphate dehydrogenase. The distribution of PAFR was assessed by immunohistochemistry. RESULTS: Baseline PAFR mRNA expression was increased (p < 0.05) in smokers (n = 16), and smokers with COPD (n = 14) compared with non-smokers (n = 18). In RV16 infected subjects there was no increase in PAFR mRNA expression in either non-smokers (n = 9), smokers (n = 8), or smokers with COPD (n = 7). PAFR immunoreactivity in all 3 groups was predominately restricted to the bronchial epithelium and submucosal glands. CONCLUSIONS: Endobronchial PAFR mRNA is increased in both smokers without airway obstruction and smokers with COPD. We found preliminary evidence that RV16 infection does not increase PAFR mRNA expression in either smokers or smokers with COPD.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.