Title | Autonomic deficit not the cause of death in West Nile virus neurological disease. | ||
Author | Wang, Hong; Siddharthan, Venkatraman; Hall, Jeffery O; Morrey, John D | ||
Journal | Clin Auton Res | Publication Year/Month | 2014-Feb |
PMID | 24158383 | PMCID | PMC3918122 |
Affiliation | 1.Department of Animal, Dairy, and Veterinary Sciences, School of Veterinary Medicine, Institute for Antiviral Research, Utah State University, 4700 Old Main Hill, Logan, UT, 84322-4700, USA. |
INTRODUCTION: Some West Nile virus (WNV)-infected patients have been reported to manifest disease signs consistent with autonomic dysfunction. Moreover, WNV infection in hamsters causes reduced electromyography amplitudes of the gastrointestinal tract and diaphragm, and they have reduced heart rate variability (HRV), a read-out for the parasympathetic autonomic function. METHODS: HRV was measured in both hamsters and mice using radiotelemetry to identify autonomic deficits. To identify areas of WNV infection within the medulla oblongata mapping to the dorsal motor nucleus of vagus (DMNV) and the nucleus ambiguus (NA), fluorogold dye was injected into the cervical trunk of the vagus nerve of hamsters. As a measurement of the loss of parasympathetic function, tachycardia was monitored contiguously over the time course of the disease. RESULTS: Decrease of HRV did not occur in all animals that died, which is not consistent with autonomic function being the mechanism of death. Fluorogold-stained cells in the DMNV were not stained for WNV envelope protein. Fourteen percent of WNV-stained cells were co-localized with fluorogold-stained cells in the NA. These data, however, did not suggest a fatal loss of autonomic functions because tachycardia was not observed in WNV-infected hamsters. CONCLUSION: Parasympathetic autonomic function deficit was not a likely mechanism of death in WNV-infected rodents and possibly in human patients with fatal WN neurological disease.