Title Anti-inflammatory glucocorticoids: changing concepts.
Author Newton, Robert
Journal Eur J Pharmacol Publication Year/Month 2014-Feb
PMID 23747654 PMCID -N/A-
Affiliation 1.Department of Cell Biology and Anatomy, Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1. Electronic address: rnewton@ucalgary.ca.

Despite being the most effective anti-inflammatory treatment for chronic inflammatory diseases, the mechanisms by which glucocorticoids (corticosteroids) effect repression of inflammatory gene expression remain incompletely understood. Direct interaction of the glucocorticoid receptor (NR3C1) with inflammatory transcription factors to repress transcriptional activity, i.e. transrepression, represents one mechanism of action. However, transcriptional activation, or transactivation, by NR3C1 also represents an important mechanism of glucocorticoid action. Glucocorticoids rapidly and profoundly increase expression of multiple genes, many with properties consistent with the repression of inflammatory gene expression. For example: the dual specificity phosphatase, DUSP1, reduces activation of mitogen-activated protein kinases; glucocorticoid-induced leucine zipper (TSC22D3) represses nuclear factor-kappaB (NF-kappaB) and activator protein 1 (AP-1) transcriptional responses; inhibitor of kappaBalpha (NFKBIA) inhibits NF-kappaB; tristraprolin (ZFP36) destabilises and translationally represses inflammatory mRNAs; CDKN1C, a cell cycle regulator, may attenuate JUN N-terminal kinase signalling; and regulator of G-protein signalling 2 (RGS2), by reducing signalling from Galphaq-linked G protein-coupled receptors (GPCRs), is bronchoprotective. While glucocorticoid-dependent transrepression can co-exist with transactivation, transactivation may account for the greatest level and most potent repression of inflammatory genes. Equally, NR3C1 transactivation is enhanced by beta2-adrenoceptor agonists and may explain the enhanced clinical efficacy of beta2-adrenoceptor/glucocorticoid combination therapies in asthma and chronic obstructive pulmonary disease. Finally, NR3C1 transactivation is reduced by inflammatory stimuli, including respiratory syncytial virus and human rhinovirus. This provides an explanation for glucocorticoid resistance. Continuing efforts to understand roles for glucocorticoid-dependent transactivation will provide opportunities to improve glucocorticoid therapies.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.