Title The effects of omega-3 polyunsaturated fatty acids on cardiac rhythm: a critical reassessment.
Author Billman, George E
Journal Pharmacol Ther Publication Year/Month 2013-Oct
PMID 23735203 PMCID -N/A-
Affiliation 1.Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210-1218, United States. Electronic address: billman.1@osu.edu.

Although epidemiological studies provide strong evidence for an inverse relationship between omega-3 polyunsaturated fatty acids (n-3 PUFAs) and cardiac mortality, inconsistent and often conflicting results have been obtained from both animal studies and clinical prevention trials. Despite these heterogeneous results, some general conclusions can be drawn from these studies: 1) n-PUFAs have potent effects on ion channels and calcium regulatory proteins that vary depending on the route of administration. Circulating (acute administration) n-3 PUFAs affect ion channels directly while incorporation (long-term supplementation) of these lipids into cell membranes indirectly alter cardiac electrical activity via alteration of membrane properties. 2) n-3 PUFAs reduce baseline HR and increase HRV via alterations in intrinsic pacemaker rate rather than from changes in cardiac autonomic neural regulation. 3) n-3 PUFAs may be only effective if given before electrophysiological or structural remodeling has begun and have no efficacy against atrial fibrillation. 5) Despite initial encouraging results, more recent clinical prevention and animal studies have not only failed to reduce sudden cardiac death but actually increased mortality in angina patients and increased rather than decreased malignant arrhythmias in animal models of regional ischemia. 6) Given the inconsistent benefits reported in clinical and experimental studies and the potential adverse actions on cardiac rhythm noted during myocardial ischemia, n-3 PUFA must be prescribed with caution and generalized recommendations to increase fish intake or to take n-3 PUFA supplements need to be reconsidered.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.