Title | Design and implementation of a control system reflecting the level of analgesia during general anesthesia. | ||
Author | Janda, Matthias; Schubert, Agnes; Bajorat, Jorn; Hofmockel, Rainer; Noldge-Schomburg, Gabriele F E; Lampe, Bernhard P; Simanski, Olaf | ||
Journal | Biomed Tech (Berl) | Publication Year/Month | 2013-Feb |
PMID | 23314499 | PMCID | -N/A- |
Affiliation | 1.Department of Anesthesiology and Intensive Care Medicine, University of Rostock, Rostock, Germany. |
INTRODUCTION: Measuring and ensuring an adequate level of analgesia in patients are of increasing interest in the area of automated drug delivery during general anesthesia. Therefore, the aim of this investigation was to develop a control system that may reflect the intraoperative analgesia value. Our hypothesis was that a feedback controller could be applied in clinical practice safely and at an adequate quality of analgesia. The purpose of this study was to evaluate the practical feasibility of such a system in a clinical setting. METHODS: The control system for the level of analgesia described in this paper relies on a parameter combination of heart rate variability (HRV), heart rate (HR), and blood pressure (mean arterial pressure, MAP), which serve as input variables for an expert system. For this fuzzy system, the experience of the participating anesthesiologists was translated into a set of fuzzy rules. In a pilot trial, the control system for automated titration of remifentanil, a short-acting opioid, was tested combined with a closed-loop propofol infusion system for hypnosis. Ten adult patients (4 women, 6 men), aged 22-52 years (median, 45 years; range, 29-49 years), with an American Society of Anesthesiologists physical status class I or II and who were scheduled for elective trauma surgery in a supine position were enrolled in this prospective trial. The precision of the system was calculated using internationally defined performance parameters. RESULTS: There was no human intervention necessary during the computer-controlled administration of propofol and remifentanil, and operating conditions were satisfactory in all patients. All patients assessed the quality of anesthesia as "good" to "very good". Median performance error, median absolute performance error, and wobble for HR and MAP during maintenance of anesthesia were -8.98 (5.32), 10.08 (4.17), and 2.68 (1.29) and -4.51 (12.73), 13.63 (2.27), and 3.90 (2.08) [mean (SD)], respectively. CONCLUSION: The control system, reflecting the level of analgesia during general anesthesia designed and evaluated in this study, allows for a clinically practical, nearly fully automated infusion of an opioid during medium-length surgical procedures with acceptable technical requirements and an adequate precision.