Title Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy.
Author Carll, Alex P; Haykal-Coates, Najwa; Winsett, Darrell W; Rowan, William H 3rd; Hazari, Mehdi S; Ledbetter, Allen D; Nyska, Abraham; Cascio, Wayne E; Watkinson, William P; Costa, Daniel L; Farraj, Aimen K
Journal Inhal Toxicol Publication Year/Month 2010-Apr
PMID 20121584 PMCID -N/A-
Affiliation 1.Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA.

Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were infused with isoproterenol (ISO; 2.5 mg/kg/day subcutaneous [sc]), a beta-adrenergic agonist, for 28 days and subsequently exposed to PM by inhalation. ISO induced tachycardia and hypotension throughout treatment followed by postinfusion decrements in heart rate, contractility, and blood pressures (systolic, diastolic, pulse), and fibrotic cardiomyopathy. Changes in heart rate and heart rate variability (HRV) 17 days after ISO cessation indicated parasympathetic dominance with concomitantly altered ventilation. Rats were subsequently exposed to filtered air or Harvard Particle 12 (HP12) (12 mg/m(3))--a metal-rich oil combustion-derived PM--at 18 and 19 days (4 h/day) after ISO infusion via nose-only inhalation to determine if cardio-impaired rats were more responsive to the effects of PM exposure. Inhalation of PM among ISO-pretreated rats significantly increased pulmonary lactate dehydrogenase, serum high-density lipoprotein (HDL) cholesterol, and heart-to-body mass ratio. PM exposure increased the number of ISO-pretreated rats that experienced bradyarrhythmic events, which occurred concomitantly with acute alterations of HRV. PM, however, did not significantly affect mean HRV in the ISO- or saline-pretreated groups. In summary, subchronic ISO treatment elicited some pathophysiologic and histopathological features of heart failure, including cardiomyopathy. The enhanced sensitivity to PM exposure in SHHF rats with ISO-accelerated cardiomyopathy suggests that this model may be useful for elucidating the mechanisms by which PM exposure exacerbates heart disease.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.