Title Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation.
Author Bartlett, Nathan W; Walton, Ross P; Edwards, Michael R; Aniscenko, Juliya; Caramori, Gaetano; Zhu, Jie; Glanville, Nicholas; Choy, Katherine J; Jourdan, Patrick; Burnet, Jerome; Tuthill, Tobias J; Pedrick, Michael S; Hurle, Michael J; Plumpton, Chris; Sharp, Nigel A; Bussell, James N; Swallow, Dallas M; Schwarze, Jurgen; Guy, Bruno; Almond, Jeffrey W; Jeffery, Peter K; Lloyd, Clare M; Papi, Alberto; Killington, Richard A; Rowlands, David J; Blair, Edward D; Clarke, Neil J; Johnston, Sebastian L
Journal Nat Med Publication Year/Month 2008-Feb
PMID 18246079 PMCID PMC3384678
Affiliation 1.Department of Respiratory Medicine, UK National Heart and Lung Institute, and Medical Research Council & Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, Norfolk Place, London W2 1PG, UK.

Rhinoviruses cause serious morbidity and mortality as the major etiological agents of asthma exacerbations and the common cold. A major obstacle to understanding disease pathogenesis and to the development of effective therapies has been the lack of a small-animal model for rhinovirus infection. Of the 100 known rhinovirus serotypes, 90% (the major group) use human intercellular adhesion molecule-1 (ICAM-1) as their cellular receptor and do not bind mouse ICAM-1; the remaining 10% (the minor group) use a member of the low-density lipoprotein receptor family and can bind the mouse counterpart. Here we describe three novel mouse models of rhinovirus infection: minor-group rhinovirus infection of BALB/c mice, major-group rhinovirus infection of transgenic BALB/c mice expressing a mouse-human ICAM-1 chimera and rhinovirus-induced exacerbation of allergic airway inflammation. These models have features similar to those observed in rhinovirus infection in humans, including augmentation of allergic airway inflammation, and will be useful in the development of future therapies for colds and asthma exacerbations.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.