Title | Growth phenotypes and biosafety profiles in poliovirus-receptor transgenic mice of recombinant oncolytic polio/human rhinoviruses. | ||
Author | Cello, Jeronimo; Toyoda, Hidemi; Dejesus, Nidia; Dobrikova, Elena Y; Gromeier, Matthias; Wimmer, Eckard | ||
Journal | J Med Virol | Publication Year/Month | 2008-Feb |
PMID | 18098139 | PMCID | -N/A- |
Affiliation | 1.Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-5222, USA. jcello@ms.cc.sunysb.edu. |
The use of oncolytic recombinant polioviruses has an important therapeutic potential in the treatment of human gliomas. This study was carried out to assess parameters of the utility of the oncolytic poliovirus/human rhinovirus type 2 chimeras (PV/HRV2). The prototype PV/HRV2 chimera was constructed containing the complete genome of wild-type PV type 1 (Mahoney) [PV1(M)] in which the cognate IRES was replaced with that of HRV2 [called PV1(RIPO)]. A derivative of PV1(RIPO) is PV1(RIPOS) in which the capsid coding region (P1) was replaced with the capsid-coding region of the PV type 1 (Sabin) [PV1(S)] vaccine strain. In addition, a third PV/HRV2 chimera was constructed containing the complete genome of PV1(S) in which the cognate IRES was replaced with that of HRV2 [termed PVS(RIPO)]. To analyze the growth phenotypes of PV/HRV2 recombinants [PV1(RIPO), PV1(RIPOS), PVS(RIPO)], one-step growth experiments were performed in four human cell lines at three different temperatures. To address the safety profile, PVS(RIPO) was injected into the brain of CD155 tg mice at the dose 10(7) PFU. Then, clinical signs, persistence of the virus in the CNS and genetic stability of PVS(RIPO) replicating in the CNS were evaluated. The data obtained in the present study suggest (i) a correlation between temperature-sensitive (ts) phenotype in both neuronal and non-neuronal cell lines and neuroattenuation in experimental animals, (ii) that PVS (RIPO) is genetically stable on replication in the CNS of poliovirus-susceptible mice. These findings highlight the safety of intracerebral inoculation of PVS(RIPO) for the treatment of human glioma.