Title Night heart rate variability and particulate exposures among boilermaker construction workers.
Author Cavallari, Jennifer M; Eisen, Ellen A; Chen, Jiu-Chiuan; Fang, Shona C; Dobson, Christine B; Schwartz, Joel; Christiani, David C
Journal Environ Health Perspect Publication Year/Month 2007-Jul
PMID 17637921 PMCID PMC1913585
Affiliation 1.Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

BACKGROUND: Although studies have documented the association between heart rate variability (HRV) and ambient particulate exposures, the association between HRV, especially at night, and metal-rich, occupational particulate exposures remains unclear. OBJECTIVE: Our goal in this study was to investigate the association between long-duration HRV, including nighttime HRV, and occupational PM(2.5) exposures. METHODS: We used 24-hr ambulatory electrocardiograms (ECGs) to monitor 36 male boilermaker welders (mean age of 41 years) over a workday and nonworkday. ECGs were analyzed for HRV in the time domain; rMSSD (square root of the mean squared differences of successive intervals), SDNN (SD of normal-to-normal intervals over entire recording), and SDNN(i) (SDNN for all 5-min segments) were summarized over 24-hr, day (0730-2130 hours), and night (0000-0700 hours) periods. PM(2.5) (particulate matter with an aerodynamic diameter </= 2.5 microm) exposures were monitored over the workday, and 8-hr time-weighted average concentrations were calculated. We used linear regression to assess the associations between HRV and workday particulate exposures. Matched measurements from a nonworkday were used to control for individual cardiac risk factors. RESULTS: Mean (+/- SD) PM(2.5) exposure was 0.73 +/- 0.50 mg/m(3) and ranged from 0.04 to 2.70 mg/m(3). We observed a consistent inverse exposure-response relationship, with a decrease in all HRV measures with increased PM(2.5) exposure. However, the decrease was most pronounced at night, where a 1-mg/m(3) increase in PM(2.5) was associated with a change of -8.32 [95% confidence interval (CI), -16.29 to -0.35] msec nighttime rMSSD, -14.77 (95% CI, -31.52 to 1.97) msec nighttime SDNN, and -8.37 (95% CI, -17.93 to 1.20) msec nighttime SDNN(i), after adjusting for nonworking nighttime HRV, age, and smoking. CONCLUSION: Metal-rich particulate exposures were associated with decreased long-duration HRV, especially at night. Further research is needed to elucidate which particulate metal constituent is responsible for decreased HRV.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.