Title Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance.
Author Havemann, L; West, S J; Goedecke, J H; Macdonald, I A; St Clair Gibson, A; Noakes, T D; Lambert, E V
Journal J Appl Physiol (1985) Publication Year/Month 2006-Jan
PMID 16141377 PMCID -N/A-
Affiliation 1.University of Cape Town/Medical Research Council Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, University of Cape Town, South Africa.

The aim of this study was to investigate the effect of a high-fat diet (HFD) followed by 1 day of carbohydrate (CHO) loading on substrate utilization, heart rate variability (HRV), effort perception [rating or perceived exertion (RPE)], muscle recruitment [electromyograph (EMG)], and performance during a 100-km cycling time trial. In this randomized single-blind crossover study, eight well-trained cyclists completed two trials, ingesting either a high-CHO diet (HCD) (68% CHO energy) or an isoenergetic HFD (68% fat energy) for 6 days, followed by 1 day of CHO loading (8-10 g CHO/kg). Subjects completed a 100-km time trial on day 1 and a 1-h cycle at 70% of peak oxygen consumption on days 3, 5, and 7, during which resting HRV and resting and exercising respiratory exchange ratio (RER) were measured. On day 8, subjects completed a 100-km performance time trial, during which blood samples were drawn and EMG was recorded. Ingestion of the HFD reduced RER at rest (P < 0.005) and during exercise (P < 0.01) and increased plasma free fatty acid levels (P < 0.01), indicating increased fat utilization. There was a tendency for the low-frequency power component of HRV to be greater for HFD-CHO (P = 0.056), suggestive of increased sympathetic activation. Overall 100-km time-trial performance was not different between diets; however, 1-km sprint power output after HFD-CHO was lower (P < 0.05) compared with HCD-CHO. Despite a reduced power output with HFD-CHO, RPE, heart rate, and EMG were not different between trials. In conclusion, the HFD-CHO dietary strategy increased fat oxidation, but compromised high intensity sprint performance, possibly by increased sympathetic activation or altered contractile function.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.