Title Visual discrimination learning in dwarf goats and associated changes in heart rate and heart rate variability.
Author Langbein, Jan; Nurnberg, G; Manteuffel, G
Journal Physiol Behav Publication Year/Month 2004-Sep
PMID 15327907 PMCID -N/A-
Affiliation 1.Research Unit Behavioural Physiology, Research Institute for the Biology of Farm Animals, Germany. langbein@fbn-dummerstorf.de.

We studied visual discrimination learning in a group of Nigerian dwarf goats using a computer-based learning device which was integrated in the animals\' home pen. We conducted three consecutive learning tasks (T1, T2 and T3), each of which lasted for 13 days. In each task, a different set of four visual stimuli was presented on a computer screen in a four-choice design. Predefined sequences of stimulus combinations were presented in a pseudorandom order. Animals were rewarded with drinking water when they chose the positive stimulus by pressing a button next to it. Noninvasive measurements of goats\' heartbeat intervals were carried out on the first and the last 2 days of each learning task. We analysed heart rate (HR) and heart rate variability (HRV) of resting animals to study sustained physiological effects related to general learning challenge rather than acute excitement during an actual learning session. The number of trials to reach the learning criterion was 1000 in T1, when visual stimuli were presented to the goats for the first time, but decreased to 210 in T2 and 240 in T3, respectively. A stable plateau of correct choices between 70% and 80% was reached on Day 10 in T1, on Day 8 in T2 and on Day 6 in T3. We found a significant influence of the task and of the interaction between task and day on learning success. Whereas HR increased throughout T1, this relationship was inverted in T2 and T3, indicating different effects on the HR depending on how familiar goats were with the learning task. We found a significant influence of the task and the interaction between task and time within the task on HRV parameters, indicating changes of vagal activity at the heart. The results suggest that changes in HR related to learning were predominantly caused by a withdrawal of vagal activity at the heart. With regard to nonlinear processes in heartbeat regulation, increased deterministic shares of HRV indicated that the animals did not really relax until the end of T3. Comparing changes of HR and HRV in T3 and in a subsequent postexperiment (PE), we assume a positive effect of such cognitive challenges once the task had been learned by the animals.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.