Title Fine mapping of sequential neutralization epitopes on the subunit protein VP8 of human rotavirus.
Author Kovacs-Nolan, Jennifer; Yoo, Dongwan; Mine, Yoshinori
Journal Biochem J Publication Year/Month 2003-Nov
PMID 12901721 PMCID PMC1223744
Affiliation 1.Department of Food Science, University of Guelph, Guelph, ON, Canada N1G 2W1.

The epitopes of the HRV (human rotavirus), especially those involved in virus neutralization, have not been determined in their entirety, and would have significant implications for HRV vaccine development. In the present study, we report on the epitope mapping and identification of sequential neutralization epitopes, on the Wa strain HRV subunit protein VP8, using synthetic overlapping peptides. Polyclonal antibodies against recombinant Wa VP8 were produced previously in chicken, and purified from egg yolk, which showed neutralizing activity against HRV in vitro. Overlapping VP8 peptide fragments were synthesized and probed with the anti-VP8 antibodies, revealing five sequential epitopes on VP8. Further analysis suggested that three of the five epitopes detected, M1-L10, I55-D66 and L223-P234, were involved in virus neutralization, indicating that sequential epitopes may also be important for the HRV neutralization. The interactions of the antibodies with the five epitopes were characterized by an examination of the critical amino acids involved in antibody binding. Epitopes comprised primarily of hydrophobic amino acid residues, followed by polar and charged residues. The more critical amino acids appeared to be located near the centre of the epitopes, with proline, isoleucine, serine, glutamine and arginine playing an important role in the binding of antibody to the VP8 epitopes.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.