Title | Rosuvastatin decreases caveolin-1 and improves nitric oxide-dependent heart rate and blood pressure variability in apolipoprotein E-/- mice in vivo. | ||
Author | Pelat, Michel; Dessy, Chantal; Massion, Paul; Desager, Jean-Pierre; Feron, Olivier; Balligand, Jean-Luc | ||
Journal | Circulation | Publication Year/Month | 2003-May |
PMID | 12719275 | PMCID | -N/A- |
Affiliation | 1.Department of Medicine, Unit of Pharmacology and Therapeutics, University of Louvain, School of Medicine, Ave Mounier 53, 1200 Brussels, Belgium. |
BACKGROUND: Decreased heart rate variability (HRV) and increased blood pressure variability (BPV), determined in part by nitric oxide (NO)-dependent endothelial dysfunction, are correlated with adverse prognosis in cardiovascular diseases. We examined potential alterations in BPV and HRV in genetically dyslipidemic, apolipoprotein (apo) E-/-, and control mice and the effect of chronic statin treatment on these parameters in relation to their NO synthase (NOS)-modifying properties. METHODS AND RESULTS: BP and HR were recorded in unrestrained, nonanesthetized mice with implanted telemetry devices with or without rosuvastatin. Cardiac and aortic expression of endothelial NOS and caveolin-1 were measured by immunoblotting. Both systolic BP and HR were elevated in apoE-/- mice, with abolition of their circadian cycles. Spectral analysis showed an increase in their systolic BPV in the very-low-frequency (+17%) band and a decrease in HRV in the high-frequency (-57%) band, reflecting neurohumoral and autonomic dysfunction. Decreased sensitivity to acute injection of atropine or an NOS inhibitor indicated basal alterations in both parasympathetic and NOS regulatory systems in apoE-/- mice. Aortic caveolin-1 protein, an inhibitor of endothelial NOS, was also increased in these mice by 2.0-fold and correlated positively with systolic BPV in the very-low-frequency band. Rosuvastatin treatment corrected the hemodynamic and caveolin-1 expression changes despite persisting elevated plasma cholesterol levels. CONCLUSIONS: Rosuvastatin decreases caveolin-1 expression and promotes NOS function in apoE-/-, dyslipidemic mice in vivo, with concurrent improvements in BPV and HRV. This highlights the beneficial effects of rosuvastatin on cardiovascular function beyond those attributed to lipid lowering.