Title | Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. 6. Structure-activity studies of orally bioavailable, 2-pyridone-containing peptidomimetics. | ||
Author | Dragovich, Peter S; Prins, Thomas J; Zhou, Ru; Brown, Edward L; Maldonado, Fausto C; Fuhrman, Shella A; Zalman, Leora S; Tuntland, Tove; Lee, Caroline A; Patick, Amy K; Matthews, David A; Hendrickson, Thomas F; Kosa, Maha B; Liu, Bo; Batugo, Minerva R; Gleeson, Jean-Paul R; Sakata, Sylvie K; Chen, Lijian; Guzman, Mark C; Meador, James W 3rd; Ferre, Rose Ann; Worland, Stephen T | ||
Journal | J Med Chem | Publication Year/Month | 2002-Apr |
PMID | 11931615 | PMCID | -N/A- |
Affiliation | 1.Pfizer Global Research and Development-La Jolla/Agouron Pharmaceuticals, Inc., 10777 Science Center Drive, San Diego, California 92121-1111, USA. peter.dragvich@pfizer.com. |
The structure-based design, chemical synthesis, and biological evaluation of various 2-pyridone-containing human rhinovirus (HRV) 3C protease (3CP) inhibitors are described. These compounds are comprised of a peptidomimetic binding determinant and a Michael acceptor moiety, which forms an irreversible covalent adduct with the active site cysteine residue of the 3C enzyme. The 2-pyridone-containing inhibitors typically display improved 3CP inhibition properties relative to related peptide-derived molecules along with more favorable antiviral properties. The cocrystal structure of one pyridone-derived 3CP inhibitor complexed with HRV-2 3CP is also described along with certain ab initio conformation analyses. Optimization of the 2-pyridone-containing compounds is shown to provide several highly active 3CP inhibitors (k(obs)/[I] > 500,00 M(-1) s(-1)) that function as potent antirhinoviral agents (EC(50) = <0.05 microM) against multiple virus serotypes in cell culture. One 2-pyridone-containing 3CP inhibitor is shown to be bioavailable in the dog after oral dosing (F = 48%).