Title Separation and biospecific identification of subviral particles of human rhinovirus serotype 2 by capillary zone electrophoresis.
Author Okun, V M; Blaas, D; Kenndler, E
Journal Anal Chem Publication Year/Month 1999-Oct
PMID 10546529 PMCID -N/A-
Affiliation 1.Institute of Analytical Chemistry, University of Vienna, Austria.

During infection, human rhinoviruses undergo structural rearrangements of their capsid proteins from D-antigenic native virus (sedimenting at 150S upon sucrose density gradient centrifugation) to C-antigenic A-particles (sedimenting at 135S) and B-particles (sedimenting at 80S); the latter remain after release of the viral genomic RNA into the cytosol. Subviral particles with very similar properties can also be produced in vitro upon exposure to elevated temperatures or to low-pH buffers. This paper reports on the successful separation of native virus and 80S B-particles by capillary zone electrophoresis. Separation was carried out in an untreated fused-silica capillary (50 microns i.d., total length 50.0 cm, effective length 41.5 cm) at 20 degrees C and monitored with UV detection. The separation buffer was 100 mmol/L boric acid/borate (pH 8.3) and contained 0.5% sodium deoxycholate, 0.05% SDS, and 0.5% Triton X100R; the detergents were required to prevent viral aggregation and adsorption to the capillary wall. The analytes were identified from their characteristic spectra as determined by fast spectral scanning. Final confirmation was obtained by comparison of electropherograms from samples prior and after immunodeplition with antibodies specifically precipitating D- or C-antigen. The present method enables one to easily monitor and quantify these structural changes and thus to determine the most favorable conditions for complete conversion of native virus to 80S B-particles.

  • Copyright © 2023
    National Institute of Pathogen Biology, CAMS & PUMC, Bejing, China
    All rights reserved.